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Abstract

Continuous rhythm monitoring using wearable devices
is a potential tool for early identification of atrial fibril-
lation (AF), the most frequent cardiac arrhythmia (with
0,51% worldwide prevalence, increasing with time), and
is also a tool for remote monitoring patients after cardiac
surgery. However, AF detection directly through wearable
devices is limited by the computational complexity of the
classifier model.

In this work we propose a lightweight AF classifier
model based on the VGG-11 architecture (LiteVGG-11),
focusing on reducing the number of parameters and nu-
merical operations. Using a low number of filters, depth-
wise separable convolution, and global pooling, this model
has only 20,454 parameters and needs 6.9 MFLOP to
make an inference for an input of 10 seconds of the ECG
leads I and II, sampled at 200 Hz.

To test its effectiveness for AF detection we used the
PhysioNet/CinC Challenge 2021 public dataset, stratify-
ing the classes into sinus rhythm, AF, and other rhythms.
After 10 Monte Carlo cross-validation splits, with 24,260
unbalanced samples for training and 1,536 balanced
samples for validation and testing, the observed met-
rics (mean±standard deviation) were: Se 94.1±0.1%; Sp
91.9±0.8%; F1-Score 89.50.7±%; and AUC 96.1±0.6%.

1. Introduction

Atrial fibrillation (AF) is the most common cardiac ar-
rhythmia, with a global prevalence of 0.51% [1]. Accord-
ing to the Global Burden of Disease study from 2019,
the age-standardized prevalence rate in Brazil is 0.537%
[2], but data from the Telehealth Network of Minas Gerais
shows a prevalence of 1.33% across all ages and up to 7.0%
in octogenarians [3]. The prevalence of AF increases as
the population ages [4], leading to estimations of a 1.7%
prevalence in 2025 [5]. Furthermore, the incidence of
AF after cardiac surgery varies according to the type of
surgery, ranging from 16% to 63% [6].

Continuous rhythm monitoring via wearable devices
powered by artificial intelligence algorithms may improve
early AF diagnosis, allowing for prompt treatment and po-
tentially preventing malign outcomes (like stroke and heart
failure) [3,7]. According to a 2004 study [8], 32.3% of the
patients after coronary artery bypass graft (CABG) surgery
developed AF; from these 76.8% were first diagnosed by
using continuous monitoring and only 17.5% by traditional
12-lead ECG. Although high, this incidence may be even
higher as continuous ECG monitoring is needed to detect
most of the paroxysmal AF events [9].

Classical solutions for AF screening include hand-held
ECG devices, used periodically over multiple weeks [10,
11]. As wearable technologies become increasingly af-
fordable and utilized by the general public, AF detection
algorithms included in these devices can be an attractive
alternative to existing ECG-based solutions [12].

However, the computational complexity of most classi-
fication models, particularly those based on deep learning
algorithms, is one of the challenges for using wearable de-
vices in continuous rhythm monitoring. To improve accu-
racy, these models frequently use deeper and more com-
plex models [13, 14] or ensembles of models [15], usu-
ally without taking into account the energy consumption
or computational limitations of portable devices [16].

In this work, we propose a lightweight deep convolu-
tional neural network based on the VGG-11 architecture
[17] and apply it as a rhythm classifier, focusing on the AF
but also detecting the presence of other abnormalities.

2. Materials and method

2.1. Dataset

The dataset ensemble made available by the George B.
Moody PhysioNet Challenge 2021 - ”Will Two Do? Vary-
ing Dimensions in Electrocardiography” [18] was used in
this study to validate the proposed model as an AF classi-
fier. This ensemble consists of seven publicly available
datasets which included 88,253 annotated ECG record-
ings, with AF as one of the diagnoses in 5,284 of them.
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As this dataset comes from multiple sources, its signals
have different characteristics. The sampling rate varies
from 257 Hz to 1000 Hz, and the duration from 6 sec-
onds up to 30 minutes. The set of possible diagnoses also
changes from source to source, leading to a total of 111 di-
agnostic classes that include heart rhythms and disorders,
as well as other ECG findings.

The ECG signals were preprocessed as follows:
1. Selection of the leads I and II;
2. Downsampling to 200 Hz using polyphase filtering;
3. Z-score normalization for individual channels.
4. Cropping/zero-padding of the first 10 seconds of signal;
5. Exclusion of signals with constant voltage;

The 200 Hz sampling rate and leads I and II were chosen
to simulate a wearable ECG condition. No further prepro-
cessing, such as filtering or data augmentation, was applied
in this study.

2.2. Proposed model

The VGG models were proposed for use in computa-
tional vision tasks taking images as input [17]. When used
with unidimensional inputs, they usually are adapted by
only swapping the 2D convolutional layers for the 1D ver-
sion.

Our approach uses depth-wise separable 1D convolution
layers (DWConv), a reduced number of filters, global aver-
age pooling as flattening, and a reduced number of units in
the dense layers. Figure 1 shows the proposed architecture,
named LiteVGG, alongside the traditional VGG. As with
the VGG, the total number of convolutional/dense layers
can be customized. In this study we chose the 11-layer
configuration.

The usage of DWConv layers reduces the number of pa-
rameters and computational costs by a factor of 1/N + 1/K

[19], being N the number of output filters and K being
the kernel size. Further reduction on the model complex-
ity is achieved by using only 16 filters in the first block
and multiplying this number by a factor of

√
2 after each

pooling operation. This reduced multiplying factor results
in an effective reduction in the feature maps size, unlike if
we doubled the number of filters as in the original VGG.
However, most parameters of a VGG model are in the fully
connected block. The global pooling and reduced number
of units by dense layer resulted in a reduction from 148.9
million parameters to only 6339 in this block.

2.3. Training and evaluation

Among all the available diagnoses in the dataset, we
chose to classify the ECG exams into three classes:

1) NSR: Exams that contain only normal sinus rhythm.
Sinus bradycardia and tachycardia were also in-
cluded as normal because a patient on continuous
rhythm monitoring may enter into these states by do-
ing everyday activities;

2) AF: Exams that contain atrial fibrillation diagnostic;
3) Others: Exams that do not fit into the previous

classes.
The main goal is to classify the AF, which could be used

to trigger notifications. But Other events may indicate a
condition that needs posterior cardiologist analysis.

Our class stratification reduced the data unbalance, but
the prevalence of the AF class remains low (6%). A Monte
Carlo cross-validation with 10 sampling were used to re-
duce the unbalance during training and tests. Validation
and test sets were both balanced by sampling 512 signals
for each class. Training sets contained 10,000 ECGs for
NSR and Others classes, but only 4260 for AF.

Figure 1. Comparison between the implemented LiteVGG-11 and VGG-11 neural network architectures.
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Table 1. Model complexity and computational costs.
Model # Params Model size FLOP Inference Time¹ Memory footprint¹

ResNet-34 16.61M 66.4 MB 3.22G 198.31 ms 128.37 MB
VGG-11 152.00M 608.0 MB 2.25G 259.84 ms 1160.77 MB
LiteVGG-11 20.45k 95.2 kB 6.87M 3.24 ms 1.17 MB
Katsaouni² 290 6.7 kB 118.31k 386 µs 87.1 kB
¹ Parameters obtained with the TensorFlow Lite benchmark tool on a Samsung Galaxy A01 Core using the XNNPACK
delegate with 4 threads. ² Best-performing model in our evaluation (kernel with size 9).

For comparison, we also used ResNet-34 [20] and
VGG-11 [17] models, both adapted to unidimensional in-
put. Residual networks (and variants) were very common
in the ”Will two do?” challenge [14,15,21] and other ECG
classification tasks [22, 23]. And as our proposed model is
an adaptation of the VGG-11, the original model is used to
compare the impact of the reduction in complexity. These
models, however, are computationally expensive. Energy-
efficient models proposed by Katsaouni [16] were used as
an additional comparison.

All models were implemented using TensorFlow. Train-
ing was performed over up to 200 epochs with an initial
learning rate of 10−3, using the ADAM optimizer and cat-
egorical cross entropy loss. The learning rate was reduced
by a factor of 0.2 after 30 epochs without a reduction in
the validation loss, and the training was stopped early after
50 epochs without a validation loss reduction.

3. Results and discussion

Table 1 compares the computational costs of our mod-
els against all the other models. Compared to the origi-
nal VGG-11, our model requires 99.997% fewer parame-
ters, 99.58% fewer floating point operations (FLOP), and
98.75% less time for inference. Katsaouni’s model is even

less computationally expensive. It has only 290 parame-
ters and requires 88.09% less time for inference than our
model.

Even though our model is not the lightest, it achieved
lower computational costs while preserving a classifica-
tion performance comparable to that of the ResNet-34, as
shown in table 2. Katsaouni’s models were designed in a
way to minimize their requirements but balance the low
number of parameters with a recurrent scenario that was
not reproduced in this work. LiteVGG has the advantage
of high accuracy in an instantaneous rhythm classification
using lower computing resources.

This work did not evaluate the models using the chal-
lenge’s metric because we used different class definitions.
The unique class that was not modified in comparison to
the original challenge’s dataset is the AF, enabling some
degree of comparison. The challenge winner, ISIBrno-
AIMT team, used an ensemble of residual networks ap-
proach that achieved 97.1% AUROC and an 83% F1-score
when using only the leads I and II [15]. Considering only
the AF class (and two lead approaches), the snu adsl team
achieved the best AUROC (98.0%) and F1-score (88.3%)
by using representational learning and an EfficientNet-B3
model [13]. LiteVGG-11 has a lower AUROC than both
models but a higher F1-score.

Table 2. Cross-validation metrics. The best metrics for each class are highlighted in bold.
Model Target class Sensitivity Specificity F1-score AUROC Accuracy

AF 87.1± 3.5 93.1± 1.3 86.7± 1.8 96.0± 0.6
ResNet-34 NSR 89.2± 3.3 88.8± 1.8 84.3± 0.7 95.1± 0.3 80.3± 1.0

Others 64.8± 3.8 88.6± 2.5 69.0± 1.5 84.1± 1.2

AF 91.6± 2.6 90.3± 1.5 86.8± 1.0 95.2± 0.4
VGG-11 NSR 92.7± 2.6 84.1± 1.9 82.6± 0.8 93.6± 0.7 78.2± 1.2

Others 50.4± 3.8 93.0± 1.7 61.2± 2.8 80.0± 1.4

AF 93.9± 0.6 91.6± 1.1 89.1± 1.1 96.2± 0.5
LiteVGG-11 NSR 93.2± 1.8 86.3± 1.1 84.5± 0.9 94.9± 0.6 81.2± 1.1

Others 56.7± 3.3 94.0± 0.8 67.2± 2.4 84.1± 1.4

AF 83.2± 4.7 78.2± 5.9 73.5± 5.3 86.2± 4.3
Katsaouni NSR 75.0± 4.7 81.3± 2.6 70.6± 2.5 86.1± 1.8 62.8± 4.2

Others 30.2± 6.7 84.7± 2.3 37.3± 7.0 61.1± 4.6
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According to the STM32Cube.AI analysis tool, LiteVGG-
11 models can run directly into an Arm Cortex-M4 micro-
controller AI compatible (or superior), requiring 80 KiB of
flash and 101 KiB of RAM, enabling even an AF detection
direct by a wearable ECG.

4. Conclusion

LiteVGG-11 model achieved an AF classification met-
rics comparable to more robust models while retaining low
computing requirements. Our model could be embedded
into mobile applications or even directly into a wearable
ECG, enabling continuous AF monitoring for patients af-
ter cardiac surgeries or for early AF identification.
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